本期为各位考生带来了2017广西公务员行测技巧:同余特性巧解不定方程。相信行测考试一定是很多考生需要努力攻克的一道坎儿。行测中涉及的知识面之广,考点之细,需要开始做到在积累的同时掌握一定的解题技巧。广西公务员考试网温馨提示考生阅读下文,相信能给考生带来一定的帮助。
仔细研读下文>>>2017广西公务员行测技巧:同余特性巧解不定方程
在行测考试中的数学运算中,我们常常会碰到一些要求解多元不定方程的题目,一些简单的不定方程我们可以通过尾数、奇偶性、整除、特值或者直接代入解出,而遇到稍微复杂一点的方程,以上方法就不易使用了。接下来广西公务员考试网将通过详细介绍帮助大家进一步的理解同余特性解方程的方法和本质,以便大家能够灵活的利用同余特性解方程。
一、同余系
整数a除以整数b,得到正余数为c,c±kb(k为自然数)均为a除以b的余数。,属同余系。例:-2,1,4,7都属于16÷3的余数。
二、同余特性
性质一:余数的和决定和的余数
例:13÷4…1,21÷4…1,余数的和为2,和为13+21=34,34÷4…2,所以说余数的和决定和的余数。
性质二:余数的差决定差的余数
例:15÷4…3,22÷4…2,余数的差为-1,差为22-15=7,7÷4…3(相当于余-1),所以说余数的差决定差的余数。
性质三:余数的积决定积的余数
例:30÷4…2,18÷4…2,余数的积为4,积为30×18=540,540÷4…0,余数为0,余数的积为4,4÷4…0,所以说余数的积决定积的余数,而不是等于。
性质四:余数的幂决定幂的余数
例:53÷3=125÷3…2,5÷3余数为2,余数的幂为23=8,8÷3…2,所以余数的幂决定幂的余数。
三、同余特性解不定方程
例1:x+3y=100,x、y皆为整数,则x是多少?
A.41 B.42 C.43 D.44
【解析】C。3y能被3整除,100÷3…1,根据余数的和决定和的余数得x除以3余数为1,所以选择C。
例题2:7a+8b=111,已知a,b为正整数,且a>b,则a-b=?
A.2 B.3 C.4 D.5
【解析】B。8b除以8余0 ,而111÷8除以8余7,利用同余特性余数的和决定和的余数, 7a÷8余数为7,再利用余数的积决定积的余数,得到a÷8余1。正整数范围内第一个÷8余数为1的数,而题干要求a大于b,而1是最小的正整数,因此a不能等于1 ,下一个÷8余1的数为9,此时b=6,恰好满足a-b都为正整数,且a大于b ,因此a-b等于3 ,结合选项,选择B。
另解:7a÷3余a,8b÷3余-b,所以(7a+8b)÷3余数为a-b,111÷3余数为0,同余3,所以选B。